Intrusive Brain Reading Surveillance Technology PT.2

Intrusive Brain Reading Surveillance Technology PT.2

From the way Back Machine Dec. 7 2008
View from a cats eye.

Not to clear, but the other view is from a computer connect to the cats brain, which is!

   

In 1999 researchers led by Dr. Yang Dan, an assistant professor of neurobiology at the University of California, Berkeley, anaesthetized a cat with sodium pentothal, chemically paralyzed it with Norcuron, and secured it tightly in a surgical frame. They then glued metal posts to the whites of its eyes, and forced it to look at a screen that showed scene after scene of swaying trees and turtleneck-wearing men.

This was not a form of Clockword-Orange-style aversion therapy for cats. Instead, it was a remarkable attempt to tap into another creature's brain and see directly through its eyes. The researchers had inserted fibre electrodes into the vision-processing centre of the cat's brain. The electrodes measured the electrical activity of the brain cells and transmitted this information to a nearby computer which decoded the information and transformed it into a visual image. As the cat watched the images of the trees and the turtleneck-wearing guy, the same images emerged (slightly blurrier) on the computer screen across the room.

   
    webmaster note: The article also states    
    "The commercial potential of the technology is mind-boggling.    
   

(It's not just the commercial potential that are mind-boggling)

with this technology your cat could one day be spying on you!

   
   

It goes on to state:

Forget helmet-cam at the superbowl; get ready for eye-cam. Or how about this — never carry a camera again. Take pictures by blinking your eyes. It would work great unless you had a few too many drinks on vacation.

   

Some people just can't see the big picture...

some links for the interested:

Events

White paper

More Publications

 

Primitive “mind-reading” devices make progress, researchers report

Posted April 24, 2005
Courtesy Nature Research Journals
and World Science staff

Without little fanfare, mind reading has left the pages of science-fiction fantasy and begun tapping on reality’s door.

In new experiments, researchers say they have built devices that decode, from brain scans, simple aspects of mental states.

The machines tell whether people are visualizing one or another of a set of patterns they have viewed, the scientists say. In some cases the devices know better what has passed through a person’s mind than he or she does, according to researchers—offering a possible glimpse into the unconscious.

Mind-reading, as futuristic and improbable as it sounds, is not completely new.

Lie detectors, which have existed for decades, arguably are crude mind readers. Some humans are superb lie detectors, for that matter.

More recently, more sophisticated technologies have added to this mind-reading arsenal. Associating brain activity patterns as they appear on brain scans with specific emotions has become a routine part of brain research, for instance.

Researchers have also taken stabs at programming computers to decipher the contents of the “mind’s eye.”

As we look around, objects and scenes cause patterns of activity in the part of our brain devoted to vision. In 1999, University of California at Berkeley researchers reported having used a computer to roughly reconstruct the scenes a cat was viewing. The computer read signals from wires recording electrical activity in 177 of the animal’s cells, from a brain area that receives visual information from the eye. (Click here for pictures of the reconstructions alongside what the cats had actually seen).

The new findings go a step further: researchers now report having decoded mental imagery without the use of such wires. Instead, they employed a brain scanning technology called functional Magnetic Resonance Imaging, which shows how active different brain regions are based on their oxygen usage.

Moreover, the researchers say brain scans can be decoded to find out not just what people were shown, but which characteristics of the image they were concentrating on, and even whether they saw something too briefly to remember it.

The research, from two separate scientific groups, is published in the May issue of the research journal Nature Neuroscience.

Yukiyasu Kamitani and Frank Tong found that when people were shown stripes tilted in different directions, there were subtle differences in the pattern of brain activity that showed up on the scans. Kamitani is with the ATR Computational Neuroscience Laboratories, Kyoto, Japan and Frank Tong is at Princeton University, Princeton, New Jersey.

They created a computer program that could learn to recognize the different patterns by analyzing examples of previous scans, and their relationships to different stripe angles associated with them.

The programs learned to discern which stripes had been shown for a given scan with high accuracy, Kamitami and Tong wrote.

Furthermore, when subjects were shown a plaid pattern made up of two different sets of stripes but asked to pay attention to only one set, the program was able to tell which one the subjects were thinking about.

“The mind-reading approach presented here provides a potential framework for extending the study of the neural correlates of subjective experience,” that is, of what happens in our brains as we think, wrote the researchers.

“Our approach may be extended to studying the neural basis of many types of mental content, including a person’s awareness, attentional focus, memory,” and intentions and choices, the authors wrote.

Using a similar analysis of brain scans, John-Dylan Haynes and Geraint Rees of University College London, U.K., wrote that they could tell what people had seen better than the people themselves.

When two images were flashed on in quick succession, subjects only saw the second one and were unable to make out the first. Yet the authors said their computer program could distinguish the patterns of brain activity created by the invisible images, even though the people could barely guess at what they had seen.

The findings could also suggest new directions for studies into the still poorly understood difference between conscious and unconscious thought, the researchers wrote. “Whether to be represented in conscious experience information has to cross a threshold level of activity, or perhaps needs to be relayed to another region of the brain, is an intriguing question for further research.”

Last Updated ( Friday, 07 March 2008 )

Admin's note: Where do you think the research is at now?

Comments   

0 # Profiderall 2015-12-13 12:27
Hi there would you mind letting me know which hosting company you're working with?
I've loaded your blog in 3 different web browsers and I must say this blog loads a lot quicker then most.
Can you recommend a good internet hosting provider at a fair price?
Thanks a lot, I appreciate it!
Reply | Reply with quote | Quote
0 # akoben adinkrahene 2015-12-13 16:44
Thanks for the comment. This service is 1and1.com.
Reply | Reply with quote | Quote

Add comment

User Guide is located at here. There you can also find tags for adding media to your comment. "NEW" Or Click the ADD COMMENT link on the main menu to start or join a conversational topic.


Security code
Refresh

joomla templatesfree joomla templatestemplate joomla
2018  GeneticMemory   globbers joomla template